Abstract

Abstract Polar amido-phosphane ligands, viz 1-(diphenylphosphanyl)-1′-[N-(2-hydroxyethyl)carbamoyl]ferrocene (1) and 1-(diphenylphosphanyl)-1′-[N,N-bis(2-hydroxyethyl)carbamoyl]ferrocene (2) were synthesised from 1′-(diphenylphosphanyl)-1-ferrocenecarboxylic acid (Hdpf) by direct amide coupling or via Hdpf-pentafluorophenyl ester 3. Subsequent reactions of 1 and 2 with [PdCl2(cod)] (cod = η2:η2-cyclocta-1,5-diene) gave the respective bis(phosphane) complexes trans-[PdCl2L2] (4, L = 1; 5, L = 2). Depending on the solvent used in their subsequent crystallisation (ethanol or chloroform), these complexes were isolated in several defined solvated forms. The structure determination for free ligands and their solvated complexes (4·2EtOH, 4·6CHCl3, 5·2EtOH, and 5·4CHCl3) revealed the dominating role of hydrogen bonding in their crystal assemblies, the nature and complexity of the formed hydrogen-bonded arrays strongly varying with the ligand structure (one vs. two 2-hydroxethyl chains), their number in the discrete species (free ligands vs. the complexes), and also with the solvate. Catalytic tests performed with 4 and 5 in Suzuki–Miyaura cross-coupling reaction showed that both complexes form active catalysts for the coupling of aryl bromides with phenylboronic acid in common polar organic solvents, in water and in toluene–water biphasic mixture. Yet, complex 4 gave rise to hydrolytically more stable catalyst, which could be used five times without any detectable loss of activity in the toluene/water system. Complex 4 was also successfully applied to the synthesis of biaryl anti-inflammatory drugs and their analogues in pure water and in the toluene–water mixture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.