Abstract

In a noncontextual hidden variable model of quantum theory, hidden variables determine the outcomes of every measurement in a manner that is independent of how the measurement is implemented. Using a generalization of this notion to arbitrary operational theories and to preparation procedures, we demonstrate that a particular two-party information-processing task, "parity-oblivious multiplexing," is powered by contextuality in the sense that there is a limit to how well any theory described by a noncontextual hidden variable model can perform. This bound constitutes a "noncontextuality inequality" that is violated by quantum theory. We report an experimental violation of this inequality in good agreement with the quantum predictions. The experimental results also provide the first demonstration of 2-to-1 and 3-to-1 quantum random access codes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call