Abstract

In recent years, metal-based complexes including selenium (Se) and zinc (Zn)-containing compounds have been widely explored for their therapeutic properties due to their roles in biological processes and modulation of diverse molecular targets. Humic acid, as a metal complexing agent, is also widely used in biomedical field. In this work, three kinds of modified sodium humate (HNa), including Zn-HNA, Se-HNa, and Zn/Se-HNa, were prepared by ion exchange reaction method. The modified HNa was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and elemental mapping. The bacteriostatic activity and mechanism of modified HNa against gram-positive and gram-negative bacteria were investigated by testing bacterial inhibition zone, minimum inhibitory concentration, and capacity to destroy integrity of the bacterial membrane, promoting ROS generation level and prevention of biofilms. FTIR results showed that HNa could combine with zinc ions and selenite ions. The main XRD peaks did not change significantly. In the modified HNa, the particle shape was irregular. Compared to HNa, Zn-HNA, and Se-HNa, Zn/Se-HNa showed the strongest bacteriostatic activity. Zn/Se-HNa exhibited high bacteriostatic activity against gram-negative bacteria (Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae) and gram-positive bacteria (Staphylococcus aureus), but showed weak antibacterial activity against another gram-positive bacteria, Bacillus subtilis. The bacteriostasis was achieved by altering the permeability of bacterial cell membranes, generating ROS, and preventing the formation of biofilms. In conclusion, Zn/Se-HNa has high bacteriostatic activity, making it a suitable alternative to antibiotics in fields like the treatment of trauma infections and animal husbandry. KEY POINTS: • Preparate and characterize zinc- and selenium-loaded sodium humate (Zn/Se-HNa). • The combination of Zn and Se enhanced the bacteriostatic activity of HNa. • Zn/Se-HNa alters the permeability of bacterial cell membranes and promotes generation of ROS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call