Abstract

A new method for synthesis of carbon-supported catalysts where precursors were obtained by slow pyrolysis of whole (8 mm) and ground (4 and 2 mm) corn grains impregnated with nickel nitrate solution is described. Carbon-supported nickel catalysts prepared by precursor activation at three levels of maximum activation temperature (600, 680, and 750 °C) were characterized and tested in the liquid-phase cinnamaldehyde hydrogenation. The influence of corn grain size and maximum activation temperature on catalyst texture, nickel loading, nickel nanoparticle size, and hydrogenation reaction performances was evaluated. An increase in BET specific surface (92–379 m2/g), porosity (0.13–0.60), mean pore diameter (12.8–22 nm), nickel loading (3.56–25.41%), and nickel nanoparticle size (21–55 nm) was found with decreasing grain size and increasing activation temperature. The highest values of cinnamaldehyde conversion (97%) and initial turnover frequency (0.31 and 0.36 s–1) were obtained for supported catalysts prepar...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.