Abstract

Nitrilases capable of performing hydroxylation of 2-chloroisonicotinonitrile to 2-chloroisonicotinic acid were screened, and ES-NIT-102 was the best nitrilase for said biotransformation. Nitrilase was immobilized as cross linked enzyme aggregates (nitrilase-CLEAs) by fractional precipitation with iso-propanol, and cross linked with glutaraldehyde. The nitrilase-CLEAs prepared with optimized 35mM glutaraldehyde for 120min cross linking time had 82.36 ± 4.45% residual activity, and displayed type-II structural CLEAs formation as confirmed by particle size, SEM, FTIR, and SDS-PAGE analysis. Nitrilase-CLEAs had superior pH and temperature stability, showed a shift in optimal temperature by 5°C, and retained nearly 1.5 to 1.7 folds activity over free nitrilase at 50°C and 55°C after more than 9h incubation. Nitrilase-CLEAs showed reduced affinity and decreased conversion of substrate as indicated by slightly higher Km values by 5.19% and reduced Vmax by 17%. Furthermore, these nitrilase-CLEAs showed 98% conversion, 94.72g/L product formation, and 83.30% recovery after 24h when used for hydroxylation of 2-chloroisonicotinonitrile to 2-chloroisonicotinic acid. Nitrilase-CLEAs were catalytically active for 3 cycles showcasing 81% conversion, 75.53g/L product formation and 66.42% yield. The recovered product was confirmed by HPLC, FTIR, LC-MS, and 1H NMR, and displayed > 99% purity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.