Abstract

Photocrosslinkable biomimetic chitosan derivative, glycidyl methacrylate-phosphorylcholine-chitosan (PCCs-GMA) was synthesized through the combination of Atherton-Todd reaction for coupling phosphorylcholine and ring opening reaction of epoxides for attaching GMA, and confirmed by 1H and 31P NMR and Fourier transform infrared (FTIR) spectroscopy. The photo-crosslinking reaction of PCCs-GMA with different degree of substitution (DS) of GMA allowed the formation of biomimetic hydrogels with tunable mechanical and swelling properties. Cold crystallization behaviors ascribed to their restrained freezing bound water were investigated using differential scanning calorimetry (DSC). The rheological and swelling behaviors, hemolysis as well as protein sorption of PCCs-GMA hydrogels were investigated in terms of the DS of GMA, using fibrinogen, bovine serum albumin and lysozyme as model proteins. Low irreversible protein sorption and non hemolytic results indicated that photo-crosslinked PCCs-GMA hydrogels may offer a promising candidate material with resistance to protein fouling in biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call