Abstract

A new biodegradable, renewable, and environmentally friendly starch-based adhesive for wood-based panels was synthesized. The synthesis was conducted by grafting polymerization of vinyl acetate (VAC) monomer onto corn starch and crosslinking polymerization with N-methylol acrylamide (NMA). Compared with the traditional starch-based wood adhesive, the water resistance of starch-based adhesive with NMA (SWA-N) was greatly improved to more than 1 MPa; this exceeds the Chinese standard by 40%. The results from various analyses, including particle size, contact angle, thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR), confocal Raman microscopy (CRM) and 13C-CPMAS, indicated that such improved performance is due to increased crosslinking density and formation of complex network structure. Such complex network structure was found to inhibit excessive expansion of the adhesive during high temperature pressing and water absorption. As a result, the internal structure of the adhesive remained intact when subjected to hot pressing and placed in wet conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.