Abstract

Abstract Blends of polycaprolactone (PCL) and poly(3-hydroxyoctanoate) P(3HO) were prepared by melt compounding. These immiscible blends exhibited droplet-matrix morphology at compositions up to 30 wt% P(3HO). Even though the addition of amorphous P(3HO) decreased the crystallinity of PCL, the crystallization temperature of the blends increased by 6 to 7 8C. Blends containing up to 30 wt% P(3HO) had higher crystallization rates, and lower crystallization half-times compared to neat PCL. The viscosity of PCL decreased upon addition of P(3HO), making the blends suitable for processing using a 3D bioplotter. Compositions with 10 to 30 wt% P(3HO) were ideal for processing, because of their improved crystallization kinetics, reduced stickiness and good flow properties. Estimation of the interfacial tension by fitting the Palierne model to the linear viscoelastic properties of the blends revealed good compatibility, which gave rise to synergistic effects in the thermal and mechanical properties. The fibres prepared by 3D bioplotting maintained droplet matrix morphology, with finer particle size than the original compounded material. In addition to favourable viscosity and thermal properties, the extruded fibres containing 30 wt% P(3HO) had comparable modulus to the neat PCL, while exhibiting good ductility. These blends may be suitable alternatives to PCL for biomedical applications, because they provide a range of crystallinities, crystallization rates and viscosities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.