Abstract
Bi2WO6 microspheres with a diameter of 1.5–2 μm were prepared by a hydrothermal method, and then coated with different contents of AgCl to form heterostructured AgCl/Bi2WO6 microspheres. The prepared Bi2WO6 and AgCl/Bi2WO6 photocatalysts were characterized by X-ray diffraction, N2 physical adsorption, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and ultraviolet-visible diffuse reflectance spectroscopy. The photocatalytic activity of the catalysts was evaluated by photocatalytic degradation of rhodamine B under ultraviolet and visible light irradiation. Results showed that the deposition of AgCl had no obvious effect on the light absorption and surface properties of Bi2WO6. However, the heterostructured AgCl/Bi2WO6 photocatalysts exhibited considerably higher activity than the pure AgCl and Bi2WO6 catalysts. With the optimal AgCl content of 20 wt%, the photocatalytic activity of the heterostructured AgCl/Bi2WO6 catalyst was increased under both ultraviolet and visible light compared with that of Bi2WO6. The main reason for the enhanced photocatalytic activity is attributed to the formation of AgCl/Bi2WO6 heterostructures effectively suppressing the recombination of photogenerated electrons and holes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.