Abstract

Abstract The Co3O4/LiNbO3 composites were synthesized by impregnation of LiNbO3 in an aqueous solution of cobalt nitrate and next by calcination at 400°C. The activity of produced samples has been investigated in the reaction of photocatalytic hydrogen generation. The crystallographic phases, optical and vibronic properties were studied using X-ray diffraction (XRD), diffuse reflectance (DR) UV-vis and resonance Raman spectroscopic techniques, respectively. The influence of cobalt content (range from 0.5 wt.% to 4 wt.%) on the photocatalytic activity of Co3O4/LiNbO3 composites for photocatalytic hydrogen generation has been investigated. Co3O4/LiNbO3 composites exhibited higher than LiNbO3 photocatalytic activity for hydrogen generation. The highest H2 evolution efficiency was observed for Co3O4/LiNbO3 composite with 3 wt.% cobalt content. The amount of H2 obtained in the presence of LiNbO3 and Co3O4/LiNbO3 (3 wt.% of cobalt content) was 1.38 µmol/min and 2.59 µmol min−1, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.