Abstract

Hexavalent chromium, Cr(VI), a highly toxic oxyanion known as a carcinogen and mutagen, is an issue of concern due to its adverse impact on human health. Therefore, development of effective technologies and/or materials for Cr(VI) removal from water has been of great interest for researchers. In this study, an electrospun carbon nanofiber (CNF) mat was prepared via electrospinning polyacrylonitrile (PAN), followed by thermal pre-oxidation and carbonization. Scanning electron microscopy (SEM) observation showed that the fiber diameter of the CNF with carbonization temperature of 950°C (CNF950) was about 266 nm. Potentiometric titration analysis demonstrated that the point of zero charge pH (pHpzc) of CNF950 was around 7.93. CNF950 demonstrated high adsorption capacity and fast adsorption kinetics for Cr(VI) at pH < 3. Langmuir isotherm calculations showed that the maximum adsorption capacity of Cr(VI) on CNF950 was 118.8 mg/g at pH 2. The adsorption isotherm of Cr(VI) on CNF950 was well described by the Redlich-Peterson model, revealing that Cr(VI) adsorption was the result of a combination of monolayer and multilayer adsorption, depending on the initial Cr(VI) concentration. Solution pH greatly affected Cr(VI) adsorption onto CNF950 due to the electrostatic interaction, and the adsorption capacity was relatively high when pH was below 3. X-ray photoelectron spectroscopy (XPS) analysis revealed that the removal of Cr(VI) might be the result of a combination of redox reaction and electrostatic adsorption. The adsorption-saturated CNF950 could be regenerated by NaOH solution. This study extends the potential applicability of electrospun CNF mats for Cr(VI)-contaminated water purification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.