Abstract

IntroductionIn the present study, we decided to prepare and formulate a new chemotherapeutic drug (silver nanoparticles in ‎aqueous medium using Salvia officinalis leaf aqueous extract) for the treatment of human ovarian cancer in the in ‎vitro condition.Material and methodsThe organometallic chemistry tests such as Scanning Electron Microscopy (SEM), UV–Visible Spectroscopy ‎‎(UV-Vis), and Fourier Transformed Infrared Spectroscopy (FT‐IR) were used for characterizing of silver ‎nanoparticles. For investigating the antioxidant potentials of AgNO3, Salvia officinalis aqueous extract, and ‎silver nanoparticles, the DPPH test was used in the presence of butylated hydroxytoluene as the positive ‎control. To survey the cytotoxicity and anti-human ovarian cancer activities of AgNO3, Salvia officinalis ‎aqueous extract, and silver nanoparticles, MTT assay was used on the human ovarian cancer cell lines i.e., Caov-‎‎3‎, SK-OV-3, and PA-1‎. ‎ResultsIn UV-Vis, the clear peak in the wavelength of 421 nm indicated the formation of silver nanoparticles. In FT-IR ‎test, the presence of many antioxidant compounds with related bonds caused the excellent condition for ‎reducing of silver in the silver nanoparticles. The silver nanoparticles inhibited half of the DPPH molecules in ‎the concentration of 251 µg/mL. The best result of anti-human ovarian cancer effects of silver nanoparticles ‎against the above cell lines was observed in the case of the SK-OV-3 cell line. ‎ConclusionsSilver nanoparticles had very low cell viability and anti-human ovarian cancer properties dose-dependently ‎against Caov-3‎, SK-OV-3, and PA-1 cell lines without any cytotoxicity on the normal cell line (HUVECs). ‎

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call