Abstract

For the successful application of boundary lubrication, detailed investigations about the influence of preparation process on molecular films are needed. In this paper, a specially designed device was used for the film preparation. The scanning electron microscope (SEM) combined with atomic force microscope (AFM) was employed to characterize the surface morphology and nanotribological behavior of molecular films. After the liquid phase deposition, molecular films are randomly and densely distributed over Ti-doped diamond-like carbon (Ti-DLC) substrates. Through rigorous surface treatments, island-like molecular films were finally achieved on substrate surfaces. The surface friction of molecular films is obviously lower than that of Ti-DLC surfaces. Then, pin-on-disk tribotests were performed to study the macrofriction behavior of molecular films under different preparation parameters. Based on the orthogonal experiment, the effect of five preparation parameters (solution weight percent, smearing force and processing time of three smearing steps) on initial friction coefficient of molecular films was investigated. The results indicated that the order of significance levels is as follows: processing time of the second smearing step > solution weight percent > processing time of step 1 > processing time of step 3 > smearing force. For the purpose of friction reduction, the appropriate level ranges are 0.75% (Solution), 2.5 N–15 N (Force), 1 min–10 min (Step 1), 1 min–2 min (Step 2) and 1 min, 2 min, 5 min and 15 min (Step 3). The initial friction coefficient under the optimized conditions is around 0.112, and the equilibrium friction coefficient is around 0.162, which is lower than that of unlubricated Ti-DLC substrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.