Abstract

In this work, we developed a sildenafil citrate (SC)-loaded polyvinyl alcohol (PVA)/sodium alginate (ALG-Na) based orodispersible film (ODF) using a solvent casting method. Formulation factors such as the type and amount of plasticizers and disintegrants were optimized on the basis of characteristics of blank ODF, including the disintegration time, elastic modulus (EM) and percentage of elongation (E%). SC-loaded ODF with a loading capacity up to 25 mg in an area of 6 cm2 was prepared and evaluated in terms of mechanical properties, disintegration time and dissolution rate. The surface morphology of ODF was visualized under a scanning electron microscope (SEM). The physicochemical properties of ODF were investigated using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR). The blank ODF composed of PVA, polyethylene glycol 400 (PEG 400) and ALG-Na (20:5:2, w/w) had a remarkably short disintegration time of about 20 s. However, the loading of drug extended the disintegration time (100 s) of ODF, while it still maintained satisfactory mechanical properties. SC was homogenously dispersed throughout the films and the crystalline form of drug changed, with strong hydrogen bonding between the drug and carriers. The PVA/ALG-Na based ODF containing SC prepared by the simple solvent casting method might be an alternative to conventional SC tablets for the treatment of male erectile dysfunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.