Abstract
The dense glycan shield on the surface of human immunodeficiency virus type 1 (HIV-1) gp120 masks conserved protein epitopes and facilitates virus entry via interaction to glycan binding proteins on susceptible host cells. The broadly neutralizing monoclonal antibody 2G12 binds a cluster of high-mannose oligosaccharides on the gp120 subunit of HIV-1 Env protein. This oligomannose epitope is currently being considered for the design of a synthetic vaccine. The cluster nature of the 2G12 epitope suggests that a multivalent antigen presentation is important to develop a carbohydrate-based vaccine candidate. In this work we describe the development of neoglycoconjugates displaying clustered HIV-1 related oligomannose carbohydrates. We exploited flexible polyamidoamine (PAMAM) scaffold to generate four- and eight-valent sugar clusters of HIV-1-related oligomannose antigens Man(4), Man(6) and Man(9). The multivalent presentation of oligomannoses increased the avidity of Man(4) and Man(9) to 2G12. The synthetic glycodendrons were then covalently coupled to the protein carrier CRM(197), formulated with the adjuvant MF59, and used to immunize two animal species. Oligomannose-specific IgG antibodies were generated; however, the antisera failed to recognize recombinant HIV-1 gp120 proteins. We conclude that further structural vaccinology work is needed to identify an antigen presentation that closely matches in vivo the structure of the epitope mapped by 2G12.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.