Abstract

In this study, nanoparticles of amoxicillin (AMX) were prepared using chitosan (CHI) and polyethylene glycol (PEG). The physicochemical properties of the particles were investigated by FT-IR, DSC, SEM, and zeta potential analyses. The nanoparticles showed a spherical shape, and the average size of formulations was within the range of 696.20 ± 24.86 − 359.53 ± 7.41 nm. Zeta potential data demonstrated that the formulations had positive surface charges with a zeta potential range of 21.38 ± 2.28 − 7.73 ± 1.66 mV. FTIR analysis showed that the drug was successfully entrapped in the nanoparticles. DSC results suggested that the drug was present in amorphous form in the polymer matrix. In vitro release studies demonstrated that the release pattern consisted of two phases, with an initial burst release followed by a controlled and sustained release. The MTT assay results on mouse fibroblast cell line indicated that the prepared formulations did not affect the viability of the cells. In the in vitro antibacterial activity test, it was found that the drug-loaded nanoparticles have AMX-equivalent antibacterial activity against E. coli, and S. aureus. These findings revealed that the obtained nanoparticles might be a promising and safe nanocarrier system for efficient delivery of AMX.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call