Abstract

ABSTRACTPoly(3-difluoroaminomethyl-3-methyl oxetane (DFAMO)/3-azidomethyl-3-methyl oxetane (AMMO)) (PDA) can be used as an energetic pre-polymer in the binder systems of solid propellants and polymer-bonded explosives (PBXs). The cationic solution polymerization affords PDA using butane diol (BDO) and boron trifluride etherate (TFBE) as initiator and catalyst, separately. Its molecular structure is characterized and thermal decomposition behavior is investigated by thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The copolymer has good thermal stability and exhibits a three-step mass-loss process with the first two steps mainly belonging to the thermal decomposition of difluoroamino and azido groups, respectively. DSC method is performed to evaluate the compatibility of PDA with some energetic components and inert materials. More than half of the selected materials are compatible with PDA, which including cyclotrimethylenetrinitramine (RDX), 2,4,6-trinitrotoluene (TNT), 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), pentaerythritol tetranitrate (PETN), ammonium perchlorate (AP), ammonium nitrate (AN), potassium nitrate (KNO3), aluminum powder (Al), aluminum oxide (Al2O3), 2-nitrodiphenylamine (NDPA) and 1,3-diethyl-1,3-diphenyl urea (C1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.