Abstract

In this study, we prepared and characterized a callus extract from Citrus junos and assessed its utility as a source of topical anti-aging ingredients. Callus extract was produced by aqueous extraction from Citrus junos grown on Murashige and Skoog medium with picloram as a growth regulator. After measuring the total phenolic and flavonoid contents, the major phenolic compound in calli was identified as p-hydroxycinnamoylmalic acid (1) by spectroscopic analysis. The total phenol content in the extract was determined to be 24.50 ± 0.43 mg/g of gallic acid equivalents; however, the total flavonoid content of the extract was not determined. The biological activities of the callus extract, in terms of skin anti-aging, were assessed by measuring the anti-tyrosinase activity in, and melanogenesis by, melanoma cells; and proliferation of, and procollagen synthesis by, human fibroblasts. The callus extract was incorporated into nanoliposomes (NLs) to improve its percutaneous absorption. Addition of the callus extract resulted in a 1.85-fold decrease in the melanin content of melanocytes compared with that with arbutin. The extract (500 μg/mL) significantly promoted the proliferation of, and procollagen synthesis by, fibroblasts (by 154% and 176%, respectively). In addition, the flux through the human epidermis of Citrus junos callus extract incorporated into NLs was 17.67-fold higher than that of the callus extract alone. These findings suggest that Citrus junos callus extract-loaded NLs have promise as an anti-aging cosmetic, as well as having a skin-lightening effect.

Highlights

  • Plant tissue culture is a valid alternative method for production of pharmaceutical and cosmeceutical ingredients; fresh material is always available regardless of the season or the plant reproductive cycle [1,2]

  • Citrus junos plant callus was produced by transferring the explants into Murashige and Skoog (MS) medium supplemented with picloram as a growth regulator

  • 24.50 ± 0.43 mg/g, and the level of p-hydroxycinnamoylmalic acid, the major phenolic compound was found as 51.49 ± 0.01 mg/g in the extract

Read more

Summary

Introduction

Plant tissue culture is a valid alternative method for production of pharmaceutical and cosmeceutical ingredients; fresh material is always available regardless of the season or the plant reproductive cycle [1,2]. Growing conditions are readily standardized, affording high-level consistency from batch to batch, and the extracted components are safe and pure; there is no risk of pathogenic or environmental contamination. Genetic or biochemical modifications may increase the concentrations of desired bioactive compounds [3,4]. Tanaka (Rutaceae), known as yuja in Korea, is a citrus tree with edible yellow fruits that has been reported to inhibit oxidative stress and inflammation [5]. Several active compounds, such as rutin, quercetin, tangeretin, naringin, and hesperidin were found in the Molecules 2017, 22, 2198; doi:10.3390/molecules22122198 www.mdpi.com/journal/molecules

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.