Abstract
Magnetic Fe-SBA-15 mesoporous silica molecular sieves were prepared, characterized, and used for magnetic separation. Wet impregnation, drying, and calcination steps led to iron inclusion within the mesopores. Iron oxide was reduced to the metal form with hydrogen, and the magnetic Fe-SBA-15 was obtained. Fourier-transform infrared spectroscopy confirmed the preparation process from the oxide to metal forms. The structure of magnetic materials was confirmed by Mössbauer spectra. Powder X-ray diffraction data indicated that the structure of Fe-SBA-15 retained the host SBA-15 structure. Brunauer-Emmett-Teller analysis revealed a decrease in surface area and pore size, indicating Fe-SBA-15 coating on the inner surfaces. Scanning electron micrographs confirmed the decrease in size for modified SBA-15 particles. From scanning electron micrographs, it was found that the size of the modified SBA-15 particles decreased. Transmission electron micrographs also confirmed that modified SBA-15 retained the structure of the parent SBA-15 silica. Fe-SBA-15 exhibited strong magnetic properties, with a magnetization value of 8.8 emu g−1. The iron content in Fe-SBA-15 was determined by atom adsorption spectroscopy. Fe-SBA-15 was successfully used for the magnetic separation of three aromatic compounds in water. Our results suggest wide applicability of Fe-SBA-15 magnetic materials for the rapid and efficient separation of various compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Automated Methods and Management in Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.