Abstract
The adsorption of Cu(II) ions by sodium-hydroxide-treated Imperata cylindrica (SoHIC) leaf powder was investigated under batch mode. The influence of solution pH, adsorbent dosage, shaking rate, copper concentration, contact time, and temperature was studied. Copper adsorption was considered fast as the time to reach equilibrium was 40–90 min. Several kinetic models were applied and it was found that pseudo-second-order fitted well the adsorption data. In order to understand the mechanism of adsorption, spectroscopic analyses involving scanning electron microscope (SEM) coupled with energy-dispersive spectroscopy (EDS) and Fourier transform infrared (FTIR) spectrophotometer were carried out. Ion exchange was proven the main mechanism involved as indicated by EDS spectra and as there was a release of light metal ions (K+, Na+, Mg2+, and Ca2+) during copper adsorption. Complexation also occurred as demonstrated by FTIR spectra involving hydroxyl, carboxylate, phosphate, ether, and amino functional groups. The equilibrium data were correlated with Langmuir, Freundlich, and Dubinin–Radushkevich isotherm models. Based on Langmuir model, the maximum adsorption capacity was recorded at the highest temperature of 310 K, which was 11.64 mg g−1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.