Abstract

Cobalt–niobia catalysts were prepared using the colloidal sol–gel technique. Niobium chloride or niobia oxide were used as precursor. The differences between the procedures used are due to the methods of preparation of the colloidal suspensions and gelification. The catalysts were characterised using adsorption and desorption curves of Kr and N 2 at 77 K, H 2-Chemisorption, XRD, FT-IR, XPS and electron microscopy investigations. Preparation of these catalysts without experimental precautions led to a very inhomogeneous structural and textural material. In contrast, the colloidal sol–gel technique controls both the structure of the niobia oxide and the tailoring of cobalt. A strong metal support interaction effect (SMSI) was present irrespective of the sample preparation variant. Although the rate of butane hydrogenolysis was low for all catalysts, a correlation between TOF and the catalyst crystallite size was found. Selectivity to methane, ethane, propane or to isomerization also depends on the catalyst crystallite size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.