Abstract

We consider a family of tensor network states defined on regular lattices that come with a natural definition of an adiabatic path to prepare them. This family comprises relevant classes of states, such as injective Matrix Product and Projected Entangled-Pair States, and some corresponding to classical spin models. We show how uniform lower bounds to the gap of the parent Hamiltonian along the adiabatic trajectory can be efficiently computed using semi-definite programming. This allows one to check whether the adiabatic preparation can be performed efficiently with a scalable effort. We also derive a set of observables whose expectation values can be easily determined and that form a complete set, in the sense that they uniquely characterize the state. We identify a subset of those observables which can be efficiently computed if one has access to the quantum state and local measurements, and analyze how they can be used in verification procedures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.