Abstract

The preparation of pure (amorphous) α-maltosyl fluoride is described. A modification of the procedure of Brauns was used to obtain analytically pure, crystalline hepta- O-acetyl-α-maltosyl fluoride, the structure of which was assigned by 19F-and 1H-n.m.r. spectroscopy. α-Maltosyl fluoride was obtained by deacetylating the heptaacetate. It behaved as a single compound on thin-layer and paper chromatography, and was essentially completely hydrolyzed to maltose and hydrogen fluoride by 0.01 M sulfuric acid in 10 min at 100°. Crystalline beta amylase, likewise, catalyzed essentially complete hydrolysis of α-maltosyl fluoride to give maltose and hydrogen fluoride. The rates of hydrolysis catalyzed by beta amylase preparations from sweet potatoes and soybeans acting on a range of concentrations of the substrate produced linear curves for the relationship, 1/ v vs 1/ S; reaction constants for crystalline, sweet-potato enzyme were K m 3.6 m M and V max ~ 2 μ mol/min/mg. The finding that α-maltosyl fluoride is hydrolyzed 30–60 times faster than maltotriose demonstrates for the first time that beta amylase is capable of effecting hydrolysis at an appreciable rate of a substrate having only two d-glucose residues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.