Abstract

A novel self-assembled C60 film was prepared by chemical adsorption of C60 molecules onto an amino-group-containing polyethyleneimine-coated silicon substrate surface. The contact angle of distilled water on the C60 film was measured, the thickness was determined by means of ellipsometric analysis, and the morphology was observed with an atomic force microscope. The tribological properties of the films were investigated as well. It was found that the C60 thin film had a contact angle of about 72 degrees and thickness of 1.8 nm and exhibited a surface domain microstructure composed of fullerene clusters. Due to the hydrophobicity and low surface energy, the C60 film possessed good adhesive resistance and had an adhesive force of about 7.1 nN, which was about an order of magnitude lower than that of the silicon substrate surface. Moreover, the C60 film showed good friction reduction, load-carrying capacity, and antiwear ability, which were attributed to the higher mechanical stiffness and elastic modulus of C60 molecules. Besides, the friction coefficient decreased with increasing sliding velocity and normal loads, due to the rolling effect of the physisorbed C60 molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call