Abstract

Poly(l-lactic acid)/poly(l-lactic acid)-grafted SiO2 nanocomposites were prepared by in situ melt polycondensation, in which “free” poly(l-lactic acid) and poly(l-lactic acid)-grafted SiO2 nanoparticles were formed simultaneously. The maximum values of grafting ratio and grafting efficiency of poly(l-lactic acid) were up to 37.67% and 26.60%, respectively. In the polycondensation system, SiO2 content was a critical parameter of getting nanocomposites with uniformly dispersed SiO2 nanoparticles. At lower SiO2 content, Mn of grafted poly(l-lactic acid) was close to that of “free” poly(l-lactic acid), and poly(l-lactic acid)-grafted SiO2 nanoparticles could be well dispersed in poly(l-lactic acid) matrix. While at higher SiO2 content, Mn of “free” poly(l-lactic acid) and grafted poly(l-lactic acid) decreased seriously, especially GPC curves of “free” poly(l-lactic acid) exhibited two peaks due to the aggregation of SiO2 nanoparticles during the polycondensation process. The grafting ratio and SiO2 content exhibited a clear effect on the thermo-oxidative degradation of nanocomposites. The existence of poly(l-lactic acid)-grafted SiO2 nanoparticles dramatically improved the thermo-oxidative stability of poly(l-lactic acid). Compared with that of pure poly(l-lactic acid), Tg, Tc, and Tm of nanocomposites varied slightly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.