Abstract

MoS2 nanosheets with size of several-hundred nanometers were prepared by a hydrothermal intercalation/exfoliation method, then MoS2/Bi2Te3 composite nanopowders were prepared by a microwave-assisted wet chemical method using the MoS2 nanosheets, TeO2, Bi(NO3)3·5H2O, KOH and ethylene glycol as raw materials. Bulk MoS2/Bi2Te3 nanocomposites were prepared by hot pressing the MoS2/Bi2Te3 composite nanopowders with MoS2 nanosheet content ranging from 0 to 17wt% at 80MPa and 648K in vacuum. X-ray photoelectron spectroscopy and X-ray diffraction analyses indicate that MoS2 and Bi2Te3 did not react each other during the hot pressing. FESEM observation reveals that the MoS2/Bi2Te3 composite samples had a more compact microstructure than the pristine Bi2Te3 bulk sample. The MoS2 phase was relatively randomly dispersed in the composite. At a given temperature, the electrical conductivity of the composites increases first then decreases as the MoS2 content increases, whereas the Seebeck coefficient of the bulk nanocomposites does not change much. A highest power factor, ~18.3μWcm−1K−2 which is about 30% higher than that of pristine Bi2Te3 sample, at 319K has been achieved from a nanocomposite sample containing 6wt% MoS2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.