Abstract

A series of binary mixtures of Methyl Palmitate (MP) and Lauric Acid (LA) were prepared and investigated, aiming for potential phase change material (PCM) for thermal energy storage systems. The thermal analysis of the PCM binary mixtures was investigated by means of Differential Scanning Calorimetry (DSC). A theoretical and experimental determination of the eutectic mixture was established. The results indicated that the eutectic binary mixture of 60%MP and 40%LA has desirable properties of phase transition temperatures within the comfort temperature range (Tm=25.6°C, Tf=20.2°C) and high latent heat capacity (ΔHm=205.4J/g, ΔHf=205.8J/g). The paper experimentally studied the other important thermo-physical properties required for modelling and stimulating the PCM in any storage systems such as thermal conductivity, enthalpy curve, phase diagram, specific heat, thermal diffusivity, and density. The thermal stability test indicated that the eutectic mixture had reliable thermal performance upon thermal cycling. Based on all these results, the MP-LA eutectic mixture is a promising material for thermal energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.