Abstract

Pure BaFe12O19 nanoparticles, having single magnetic domain sizes, were obtained at 700°C using a process combining the citrate precursor method and spray technique. A neutralized aqueous solution, containing Ba2+ and Fe3+ chelated by citric acid, was nebulized to undergo thermal decomposition in a flowing air with a maximum temperature of 250°C. The dried solid precursor so obtained was calcined at different temperatures and was then chemically and physically characterized. Crystalline barium hexaferrites were formed at temperatures as low as 650°C, but calcination temperatures higher than 680°C were required to produce pure barium ferrite powder. Based on the obtained experimental results, the reaction mechanism for the aerosol-derived precursor to form BaFe12O19 was proposed and discussed in this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.