Abstract

A series of core–shell acrylic copolymer latexes containing fluorine enriched in the shell have been prepared by emulsion polymerization of a variety of hydrocarbon monomers with (perfluoroalkyl)methyl methacrylate and vinyltriethoxysilicone. In the presence of a reactive anionic and a long chain anionic–nonionic emulsifier, the core–shell latexes were prepared and characterized by transmission electron microscopy (TEM) and tapping-mode atomic force microscopy (AFM). From AFM and contact angle measurements, it was observed that the resulting fluorine and silicon-containing acrylic copolymers with surface energy as low as 15.5 mN/m formed a dense and gradient film containing a surface layer with high a fluorine content, and that the fluorinated particles can be fixed on the surface due to the crosslinking reaction of multi-functional silicon monomer even though the fluorinated carbon number was not enough to crystallize.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call