Abstract

In the present study, nanoparticles of tin oxide were synthesised by co-precipitation method along with polypyrrole-chitin matrix prepared by chemical oxidative polymerisation technique. The synthesized nanocomposites were characterized by Fourier transform–infra red spectroscopy (FT-IR), UV-diffuse reflectance spectroscopy (UV-DRS), X-ray diffraction (XRD) to determine the functional group, optical properties, crystallite size and geometry respectively. Moreover scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDAX) was used to study surface morphology and elemental composition of the sample. The synthesised nanocomposites shows enhanced photocatalytic activity towards RhB dyes under visible light with increasing tin oxide content. The holes and superoxide free radicals were found to be dominant species in photocatalysis confirmed by quenching experiment. The photocatalyst also shows better adsorption capability and recyclability, also the photodegradation favours the acidic medium. Furthermore, the electrocatalytic properties of the nanocomposites were also investigated by cyclic voltammetry for detection of methanol (0.001 M to 0.5 M) by drawing cyclic voltammogram in the range −1.0 to +1.0 V at scan rate of 10 mV/s. The nanocomposites as electrocatalyst showed better sensitivity even at lower concentration of 0.001 M. From the given data, it is evident that the synthesized nanocomposites can be used as effective photocatalyst as well as electrocatalyst in different areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call