Abstract

There have been many articles on the degradation of pollutants by binary and ternary nanocomposites in the field of photocatalysis. However, there has been no research comparing the photocatalytic performance of Rhodamine B (Rh B) between (M(M=Pt, Ag and Au)-TiO2)@MoS2 nanocomposites and binary nanocomposites. To this end, we prepared and studied (M(M=Pt, Ag and Au)-TiO2)@MoS2 nanocomposites and compared their photocatalytic degradation efficiency with binary composites and parent materials for Rhodamine B. We concluded that the best ternary polymer nanocomposite for degrading Rhodamine B is (Pt(5 wt%)-TiO2(15 wt%))@MoS2. In this work, a series of MoS2, TiO2@MoS2, and (M(M=Pt, Ag and Au)-TiO2)@MoS2 nanocomposites with various compositions were synthesized by the hydrothermal and deposition–precipitation methods, and their photocatalytic characteristics were studied in depth using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) photoluminescence spectra (PL), FTIR spectra, UV–Vis DRS spectra, and BET analyzer. The results confirmed that TiO2 and M(Pt, Ag and Au) nanoparticles (NPs) were evenly distributed on MoS2 nanosheets (NSs) to form (M(M=Pt, Ag and Au)-TiO2)@MoS2 nanocomposite heterojunction. The UV–Vis absorption spectrum test results indicated that (Pt(5 wt%)-TiO2(15 wt%))@MoS2 ternary heterojunction nanocomposites exhibited the highest photocatalysis activity, with the maximum value of 99.0% compared to 93% for TiO2(15 wt%)@MoS2, 96.5% for (Ag(5 wt%)-TiO2(15 wt%))@MoS2, and 97.8% for (Au(5 wt%)-TiO2(15 wt%))@MoS2 within 9 min. The advanced structure of (Pt-TiO2)@MoS2 improved both light harvesting and electron transfer in the photocatalytic composites, contributing to remarkable catalytic effectiveness and extended durability for the photodegradation of Rhodamine B (Rh B). In-depth discussions of the potential growth and photocatalytic mechanism, which will help improve the energy and environmental fields, are included.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.