Abstract

Abstract The solid acid SO42 −/TiO2 was prepared by immersion method and applied for synthesis of propylene glycol methyl ether acetate (PMA) through esterification reaction of propylene glycol monomethyl ether (PM) and acetic acid (HAc). The optimal catalyst preparation condition was determined by orthogonal analysis of parameters in a five-factor and four-level test. The obtained solid acid catalysts were characterized in detail by means of X-ray powder diffraction, thermogravimetry, pyridine adsorbed IR analysis, scanning electron microscopy, and BET surface area method. Synthesis of PMA was studied in this paper through experimental investigation of reaction conditions such as temperature, molar ratio of reactants, catalyst dosage and agitation speed. Based on its possible reaction mechanism, a pseudo-homogeneous kinetic model was established and its activation energies Ea+ and Ea−, 65.68 × 103 J·mol− 1 and 57.78 × 103 J·mol− 1, were estimated. To prepare shaped solid acid catalyst SO42 −/TiO2, the shaping method of impregnation–shaping–impregnation was applied. The optimal molding formulation of solid acid catalyst, obtained from the orthogonal test, was found to be binder 7 wt.%, reinforcing agent 20 wt.%, pore forming material 2.5 wt.%, and lubricant 4 wt.%. The results of performance test of catalyst demonstrated that the shaped solid acid catalyst exhibited high activity and stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.