Abstract
In this study, a high-crystallinity glass-ceramic scintillator doped with Eu³⁺ containing Bi₂Te₄O₁₁ nanocrystals was prepared using a traditional melt crystallization method. The optimal heat treatment conditions, phase structure, and luminescent properties of the glass-ceramics were systematically investigated using various characterization techniques, including DSC, XRD, SEM, and spectrophotometry. To achieve glass-ceramic samples with high transmittance and excellent luminescent performance, the optimal heat treatment process was determined to be 500 °C for 10 min. The final sample was found to have a density of 5.9 g/cm³ and a crystallinity of 70 %. Strong orange-red light emission was exhibited by the glass-ceramic under both 465 nm light and X-ray excitation. The maximum integral X-ray excited luminescence (XEL) intensity was found to reach 20.2 % of that of the commercial Bi4Ge3O12 (BGO) scintillation crystal. It is indicated by the research that Eu³⁺-doped high-crystallinity tellurate glass-ceramics are promising candidate materials for scintillators in the field of X-ray detection.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.