Abstract

Cracks are the main challenges for asphalt pavement, which should be timely repaired. One of the most commonly used repairing methods is to fill the binding materials into cracks, but the repeated repairing ability is insufficient. The self-healing microcapsule technologies provide the potentials for enhancing the repeated repairing ability of filling materials. Therefore, the microcapsule core material was selected from sunflower oil in this study, and the capsular wall material was selected from melamine-urea-formaldehyde resin, which was used to prepare the microcapsule by using in-situ polymerization method. Three kinds of microcapsules with different particle sizes were prepared by adjusting the emulsifier dosage and core wall ratio. The microstructure, molecular structure, thermal stability, and dispersion features were further studied, and the effects of microcapsules with different particle sizes on the repeated repairability of the filling materials were evaluated via the fatiguerepair-fatigue test. In addition, the traditional regenerative microcapsules were compared to determine the optimal particle size range for sunflower oil microcapsules. According to the experimental research, it was thus concluded that the emulsion droplet size distribution was most concentrated when the emulsifier content was 0.7%; and when the core-wall ratio was 1.3:1, the microcapsules had uniform particle size and good dispersion effect. When the microcapsule emulsification rate was 900 rpm and microcapsule content was 2%, then the repeated repair effect for the microcapsule crack filling materials was optimal. The sunflower oil type microcapsule therefore meets the filling temperature requirement for the filler.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.