Abstract

The semiconducting transition metal oxide TiO2 is a rather cheap and non-toxic material with superior photocatalytic properties. TiO2 thin films and nanoparticles are known to have antibacterial, antiviral, antifungal, antialgal, self, water, and air-cleaning properties under UV or sun light irradiation. Based on these excellent qualities, titania holds great promises in various fields of applications. The vast majority of published field and pilot scale studies are dealing with the modification of building materials or generally focus on air purification. Based on the reviewed papers, for the coating of glass, walls, ceilings, streets, tunnels, and other large surfaces, titania is usually applied by spray-coating due to the scalibility and cost-efficiency of this method compared to alternative coating procedures. In contrast, commercialized applications of titania in medical fields or in water purification are rarely found. Moreover, in many realistic test scenarios it becomes evident that the photocatalytic activity is often significantly lower than in laboratory settings. In this review, we will give an overview on the most relevant real world applications and commonly applied preparation methods for these purposes. We will also look at the relevant bottlenecks such as visible light photocatalytic activity and long-term stability and will make suggestions to overcome these hurdles for a widespread usage of titania as photocalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.