Abstract

In this study, a linear polyacrylamide (PAAm) with an average viscosimetric molecular weight 3.97 × 103 kg mol−1 was added to the prereaction solution for the preparation of poly(N-isopropylacrylamide) (PNIPAAm)/clay nanocomposite hydrogels. The effects of the linear PAAm on the optical transparency and tensile property of the resulting PNIPAAm/clay/linear PAAm hydrogels were systematically investigated. The results revealed that the optical transparency and mechanical tensile properties of the resultant hydrogels strongly depended on the linear PAAm content. In particular, 5 wt% loading of linear PAAm led to almost fivefold decreases of transmittance at 25°C and a onefold increase of the tensile elongation at break. These characteristic changes were explained by a typical interpenetrating microstructure, which was formed by PNIPAAm due to the incorporation of linear PAAm in the PNIPAAm/clay network. The dynamic rheological test and infrared spectroscopy analysis on the mixed solutions consisting of linear PAAm and clay platelets further confirmed the interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call