Abstract
Epoxy acrylate (EA)/glycidyl-polyhedral oligomeric silsesquioxane (G-POSS) nanocomposites were synthesized via in situ ultraviolet initiated polymerization. XRD analysis indicates that G-POSS and EA are miscible and can form uniform composites. SEM micrographs show that the G-POSS particles (<500 nm in diameter) disperse uniformly in the polymer matrix. The EA/G-POSS nanocomposites exhibit heterogeneous morphology. FTIR analysis confirms the curing reaction is quite complete, and there are no chemical reactions between G-POSS and EA during the UV-curing process. The carbon–carbon double-bond conversion vs time profiles confirm that the addition of G-POSS improves the UV-curing rates of nanocomposites. The glass transition temperature (T g) of nanocomposites were obtained by DMA. T g reaches to the maximum at the loading of 1 wt% and then decreases with the increasing G-POSS loadings. The thermal stability, impact resistance, and flexibility of nanocomposites are all enhanced by the incorporation of G-POSS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.