Abstract

In this study, waterborne polyurethane acrylate (WPUA)/MXene nanocomposite films with varying MXene loadings were fabricated using UV-curing technology, where MXene (Ti3C2Tx) was employed as a nanofiller. The microstructure and chemical structure of the WPUA/MXene nanocomposite films were examined by XRD and FTIR, respectively. The water contact angle testing demonstrated that the incorporation of MXene into the nanocomposite films led to an increase in their hydrophilic properties. The tensile strength, the elongation at break, and Young’s modulus of the WPUA/MXene nanocomposite coatings exhibited an initial increase followed by a decrease with increasing MXene loadings. Compared to the pure WPUA film, the tensile strength and elongation at break of nanocomposites with 0.077 wt% MXene loading reached their maximum values, which increased by 39.9% and 38.5%, respectively. Furthermore, the glass transition temperature and the thermal stability were both enhanced by MXene to some extent. This study introduces a novel method for utilizing MXene in UV-curable waterborne coatings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call