Abstract

The preparation of hydroxyl chromium oxide by hydrogen reduction of disodium chromate and particulate hydroxyl mechanical activation features were studied. Then with self-made hydroxyl chromium as the raw material, a direct reduction and carburization process was used to prepare ultra-fine chromium carbonization. Through SEM and XRD, the high performance mechanical activation, key coefficients, microstructure, hardness and wear-resisting property were investigated. The results reveal that suitable mechanical activation and carbon reducing carbonization temperature, carbonization time, carbon content are beneficial to obtaining ultra-fine chromium carbonization. Typically, when the time of high performance grinding is 5 min, the carbon reducing temperature is 1 100 ℃, the carbon reducing time is 1 h, the carbon content is 28%, and finally the particle size of chromium carbide powder is 1 μm. Under this condition of preparation of ultra-fine chromium carbide, both the hardness and wear resistance are better than those in the industrialization of chromium carbide coating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.