Abstract
Single phase TiN and AlN films were prepared on a Si wafer from titanium tetra-etoxide and aluminum tri-butoxide solutions dissolved in ethanol and toluene, respectively, using an Ar/N 2/H 2 radio-frequency (r.f.) inductive thermal plasma chemical vapor deposition (CVD) method. The films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, measurement of electrical resistivity and Vickers microhardness. Factors affecting the formation of the films (lattice parameter, chemical composition, oxygen/carbon content, and deposition rate of the films) were examined in terms of the N 2 flow rate (2.5–4.5 slm), substrate temperature (300–700°C), feed rate of the solution (0.025–0.3 ml/min), and the mole ratio of the alkoxide solution (1:1–1:3). The optimum conditions for preparation of TiN films produced a film 0.2–3 μm thick with an oxygen content of 8 at.% and a free carbon content of 4 at.%, showing an electrical resistivity of 370 μΩ cm. The optimum conditions for AlN films produced a film 0.3 μm thick containing 14 at.% oxygen and 8 wt.% carbon. The deposition rate of the TiN film was determined to be 30–35 nm/min. The Vickers microhardness of the TiN and AlN films was found to be 10±1 and 13±3 GPa, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.