Abstract
AbstractSingle‐walled carbon nanotube (SWNT)/cellulose nanocomposite films were prepared using N‐methylmorpholine‐N‐oxide (NMMO) monohydrate as a dispersing agent for the acid‐treated SWNTs (A‐SWNTs) as well as a cellulose solvent. The A‐SWNTs were dispersed in both NMMO monohydrate and the nanocomposite film (as confirmed by scanning electron microscopy) because of the strong hydrogen bonds of the A‐SWNTs with NMMO and cellulose. The mechanical properties, thermal properties, and electric conductivity of the nanocomposite films were improved by adding a small amount of the A‐SWNTs to the cellulose. For example, by adding 1 wt % of the A‐SWNTs to the cellulose, tensile strain at break point, Young's modulus, and toughness increased ∼ 5.4, ∼ 2.2, and ∼ 6 times, respectively, the degradation temperature increased to 9°C as compared with those of the pure cellulose film, and the electric conductivities at ϕ (the wt % of A‐SWNTs in the composite) = 1 and 9 were 4.97 × 10−4 and 3.74 × 10−2 S/cm, respectively. Thus, the A‐SWNT/cellulose nanocomposites are a promising material and can be used for many applications, such as toughened Lyocell fibers, transparent electrodes, and soforth. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.