Abstract
The core-shell structure silicon-resin precursor powders were synthesized through coat-mix process and addition of Al 2O 3-SiO 2-Y 2O 3 composite additives. A series of porous silicon carbide ceramics were produced after molding, carbonization and sintering. The phase, morphology, porosity, thermal conductivity, thermal expansion coefficient, and thermal shock resistance were analyzed. The results show that porous silicon carbide ceramics can be produced at low temperature. The grain size of porous silicon carbide ceramic is small, and the thermal conductivity is enhanced significantly. Composite additives also improve the thermal shock resistance of porous ceramics. The bending strength loss rate after 30 times of thermal shock test of the porous ceramics which were added Al 2O 3-SiO 2-Y 2O 3 and sintered at 1 650 °C is only 6.5%. Moreover, the pore inside of the sample is smooth, and the pore size distribution is uniform. Composite additives make little effect on the thermal expansion coefficient of the porous silicon carbide ceramics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of Nonferrous Metals Society of China
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.