Abstract

The purpose of this work is to evaluate the improvement in physical stability of poly(vinyl alcohol) (PVA) modified liposomes. Liposomes composed of soya phosphatidylcholile (SPC) and cholesterol (1:1 molar ratio) were prepared by reverse phase evaporation method. Two types of interaction between liposome and PVA were investigated: PVA addition into lipid bilayer during liposome preparation and coating of already formed liposomes with PVA. The microparticles system was morphologically characterized by transmission electron microscopy (TEM) and particles analysis. Changes in particles size and zeta potential confirmed the existence of a thick polymer layer on the surface of liposomes. The amount of PVA adsorbing to liposomes and the encapsulation efficiency increased with increasing polymer concentration. The physical stability was evaluated by measuring the release rate of contents at 20 and 37 °C, the PVA modified liposomes were more stable than the conventional liposomes. Comparing with PVA-coated liposomes, the liposomes with PVA addition to the bilayer were more stable, and had higher entrapment efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.