Abstract

AbstractThis study investigated the preparation of polyimide solvent‐resistant nanofiltration membranes by a two‐step method (casting the membrane first and then crosslinking by the thermal imidization method). The influences of polymer concentration, thickness of membranes, temperature of the imidization, phase inversion time and thermal imidization procedure were studied. The membranes with the highest rejection rate of Fast Green FCF (molecular weight 808.86 g mol−1) were prepared in the following conditions: polymer concentration 13 wt%, phase inversion time 1 h, membrane thickness 150 µm and thermal imidization procedure 200 °C for 2.5 h, 250 °C for 2 h and 300 °C for 2 h in a vacuum environment; the heating rate was 5 °C min−1. The membrane was stable in most of the solvents tested and the fluxes of some common solvents were equal to or higher than a number of commercial solvent‐resistant nanofiltration membranes. A much higher rejection of dyes in water than in methanol was observed in the filtration experiments and a new way to explain it was developed. Copyright © 2011 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.