Abstract
Poly(ε-caprolactone) composite nanofibres for skin tissue engineering and regeneration applications were prepared via electrospinning of poly(ε-caprolactone) nanofibres with bioactive glass nanoparticles at bioactive glass contents of 0, 2, 4, 6 and 8 wt%. The surface properties, water absorptivities, porosities, mechanical properties and biocompatibilities of the composite electrospun nanofibres were characterised in detail. Addition of bioactive glass improved the hydrophilicity and elastic modulus of membranes. The fibre diameter of the neat poly(ε-caprolactone) nanofibres was only 700 nm, but reinforcement with 2, 4, 6 and 8 wt% bioactive glass nanofibres increased the diameter to 1000, 1100, 900 and 800 nm, respectively. The minimum elongation at break of the bioactive glass–reinforced poly(ε-caprolactone) exceeded 100%, which indicated that the composite nanofibres had good mechanical properties. The porosities of the various nanofibres containing different mass loadings of bioactive glass all exceeded 90%. The best performance in terms of cell proliferation and adhesion was found when the bioactive glass mass percent reached 6 wt%. However, higher loadings were unfavourable for cell growth. These preliminary results indicate that poly(ε-caprolactone)/bioactive glass composite nanofibres have promise for skin tissue engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.