Abstract

Poly(l-lactic acid) (PLLA) displays simultaneous repair and regeneration properties. Therefore, it is vital for developing bone repair materials while improving their mechanical strength, and biocompatibility is essential for guaranteeing its application. In this manuscript, using solid hot drawing (SHD) technology to fabricate an oriented shish-kebab like structure, furthermore, the interface-oriented grain boundary controlled the nucleation site and cell morphology during low temperature supercritical carbon dioxide (SC-CO2) foaming process, resulted in an oriented microcellular structure which was similar to load-bearing bone. The tensile strength, elastic modulus, and elongation at break of the oriented microcellular PLLA were 98.4 MPa, 3.3 GPa, and 16.4%, respectively. Furthermore, the biomimetic structure improved osteoblast cells (MC3T3) attachment, proliferation, and propagation. These findings may pave the way for designing novel biomaterials for bone fixation or tissue engineering devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call