Abstract
The nitrile rubber (NBR)/unmodified montmorillonite (Na-MMT) clay nanocomposites were prepared by latex blending method followed by melt mixing of compounding ingredients by using two-roll mill. The X-ray diffraction (XRD) studies showed an increase in the basal spacing and broadening of peak corresponding to crystal structure of Na-MMT indicating the formation of intercalated/exfoliated clay layers in the NBR matrix. Increase in clay content of nanocomposite increased the XRD peak height due to the formation of many of clay tactoids at higher loading. The transmission electron microscopy (TEM) strengthened the XRD finding by showing the presence of intercalated/exfoliated morphology of clay platelets having good dispersion. The modulus and tensile properties of the nanocomposites were improved with addition of Na-MMT which is proportional to clay concentration. The retention of tensile properties of aged nanocomposites, with all clay concentration, was superior to either pure NBR and carbon black filled NBR composite. The dynamic mechanical analysis showed proportional increase in storage modulus analogous to Na-MMT loading at all the temperature ranges due to the confinement of polymer chains between the clay layers. Nanocomposites with different proportions of clay showed a decrease in tan δmax peak height with a shift towards higher temperature indicating the reduction in the segmental mobility of polymer chain. A linear model was proposed to correlate the influence of Na-MMT content on storage modulus of nanocomposites. Differential scanning calorimetry indicated a linear increase in glass transition of nanocomposites which is proportional to clay loading. Thermogravimetric analysis revealed a small improvement in the thermal stability of nitrile rubber/clay nanocomposites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.