Abstract

Nowadays, the development of science and technology has been increasing demand for energy. Energy problem has become a bottleneck to restrict the development of international social economy. People pay more and more attention to the development and research of renewable resources. Solar energy is a kind of renewable resource with great potential and no pollution. The commercialized solar cells are mainly silicon solar cells, among which the conversion efficiency of single silicon solar cells is the highest, but the cost of silicon solar cells is high. Therefore, people have been exploring new materials, among which titanium based nano ZnO dye sensitized solar cells have been paid more and more attention by scientists at home and abroad. Based on this, the preparation and performance of nano ZnO dye sensitized solar cells based on titanium are studied. In this paper, the optical anode materials of DSSC are used as the research objects. Three-dimensional ZnO nanoband, one-dimensional graded ZnO nanotube array and one-dimensional sub grade ZnO nanowire array are prepared by anodizing and hydrothermal synthesis. The photovoltaic properties of the three materials are studied. One dimensional graded ZnO, nanotube array films were prepared by two-step hydrothermal synthesis. One dimensional hierarchical ZnO nanowire array is obtained by two-step hydrothermal synthesis. The results show that DSSC is assembled by one-dimensional graded ZnO nanotube array film, and the photoelectric conversion efficiency is 5.1%. Compared with one-dimensional ZnO nanowire array, the efficiency is improved by nearly 90%. The ZnO nanowire of the sub grade is used instead of DSSC The efficiency of photoelectric conversion is only 4% in the photoanode, which is higher than that of the smooth ZnO nanowire photocell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call