Abstract

The flexible sensor with self-healing performance can heal itself when the sensor is damaged by the outside world, so it can significantly improve the service life of the sensor and reduce the repair cost, which has attracted widespread attention. However, currently, most flexible sensors with self-healing performance have problems such as single repair conditions and difficulty in balancing mechanical performance and repair efficiency. In this study, polypyrrole modified carbon nanotubes (PPY/CNTs) were first made, and then, inspired by the Chinese traditional myth “Nuwa Fuxi”, a multiple dynamic crosslinking self-healing composite poly(siloxane-urethane) conductive elastomer (CPUSi) was successfully developed. The prepared CPUSi has excellent mechanical properties (11.27 MPa) and total shear repair efficiency (84%) under the excitation of multiple dynamic reversible interactions. At the same time, the surface scratch of CPUSi can be self-healing under multiple conditions such as heating at 60 °C, infrared light and ultraviolet light. The scratch repair efficiency is up to 99.9% under infrared light for 2 h. in addition, CPUSi has cyclic response to temperature and strain, so the material has broad application prospects in sports monitoring, electronic skin, intelligent wear, brain-computer interface and other fields

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.