Abstract

Magnesium phosphate cement (MPC) is a potential inorganic binder for steel coating due to setting and hardening rapidly, and bonding tightly with steel. NH4H2PO4-based MPC as a fire-retardant coating for steel was investigated in this work. MPC coatings were prepared from MPC paste and MPC mortar with expanded vermiculite (EV). The physical-mechanical properties and fireproof performance of MPC coatings were investigated in detail. An infrared thermal imager was employed to collect the temperature distribution and temperature rise with time on the coating samples automatically. The X-ray diffraction (XRD) and Scanning Electron Microscope (SEM) analyses were carried out on the MPC coating after the fireproof test. Re-fire test and corrosion resistance were performed preliminarily on the MPC coating. The results showed that the fireproof performance of MPC coating met the fire protection requirement for steel as long as the thickness of the MPC paste coating was up to 10 mm, while the thickness of MPC mortar coating decreased to 4 mm when adding 40% EV (by mass). Dehydration and decomposition of reacted products in the hardened MPC coating were, to some extent, contributed to the excellent fireproof performance during the fire test. The slight ceramic formation and integration of MPC coating during the fire test would compensate for the decreasing of strength due to the dehydration and decomposition, so that the MPC coating would keep certain fireproof performance when undergoing fire again. MPC is suitable for a fire-retardant coating, while higher tensile bonding strength with steel and potential corrosion resistance on steel, as well as rapid surface drying and hardening can be achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.